Welcome to the A.I.Lab website

Welcome to the website of the Artificial Intelligence Laboratory at the Department of Informatics and Artificial Intelligence of the Faculty of Applied Informatics of Tomas Bata University in Zlin.

Ph.D. study opportunities in A.I.Lab:

Interested in studying your Ph.D. in A.I.lab? Head to the Thesis topics section and start your career in Artificial Intelligence today!

Research spotlight:


Sustainable waste-to-energy facility location: Influence of demand on energy sales

Dušan Hrabec, Radovan Šomplák, Vlastimír Nevrlý, Adam Viktorin. Michal Pluháček, Pavel Popela

Energy, Volume 207, 15 September 2020, 118257

Waste-to-Energy facility location with practical insights into its economic sustainability is assessed by two mathematical models. The first model minimising transportation and investment costs leads to a mixed-integer linear problem, for which commercial solvers perform very well. However, economic performance, which is needed for long-term projects requiring large investments, is not met when the capacity of the plant is not fully utilised. This can be resolved by a revenue model defining gate fees for potential plant capacities. Therefore, a second model including penalty cost functions associated with reduced energy sales and unutilised capacity of plants is developed. This leads to a non-linear model where solvers perform well for small and medium-size instances and so a modified meta-heuristic algorithm is proposed. Both models are applied to data from the Czech Republic. Insights into performance of the models and their economical sustainability using demand influence on the energy sales are provided. While the solution of the linear model proposes a higher number of facilities with less total capacity repletion, the non-linear model suggests a smaller number of facilities with higher total repletion presenting a reasonable sustainable solution. The strategy supports the decision-making of authorities for the sustainable planning of new projects.

Cite as:

D. Hrabec, R. Šomplák, V. Nevrlý, A. Viktorin, M. Pluháček, P. Popela, Sustainable waste-to-energy facility location: Influence of demand on energy sales,
Energy, Volume 207, 2020, 118257, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2020.118257.


Distance based parameter adaptation for Success-History based Differential Evolution

Adam Viktorin, Roman Senkerik, Michal Pluhacek, Tomas Kadavy, Ales Zamuda

Swarm and Evolutionary Computation, Volume 50, November 2019

This paper proposes a simple, yet effective, modification to scaling factor and crossover rate adaptation in Success-History based Adaptive Differential Evolution (SHADE), which can be used as a framework to all SHADE-based algorithms. The performance impact of the proposed method is shown on the real-parameter single objective optimization (CEC2015 and CEC2017) benchmark sets in 10, 30, 50, and 100 dimensions for all SHADE, L-SHADE (SHADE with linear decrease of population size), and jSO algorithms. The proposed distance based parameter adaptation is designed to address the premature convergence of SHADE–based algorithms in higher dimensional search spaces to maintain a longer exploration phase. This design effectiveness is supported by presenting a population clustering analysis, along with a population diversity measure. Also, the new distance based algorithm versions (Db_SHADE, DbL_SHADE, and DISH) have obtained significantly better optimization results than their canonical counterparts (SHADE, L_SHADE, and jSO) in 30, 50, and 100 dimensional functions.

Cite as:

A. Viktorin, R. Senkerik, M. Pluhacek, T. Kadavy, A. Zamuda, Distance based parameter adaptation for Success-History based Differential Evolution, Swarm Evol. Comput. 50 (2019) 100462. doi:10.1016/J.SWEVO.2018.10.013.